Riemann Zeta Function zeta(2) (2025)

Riemann Zeta Function zeta(2) (1) TOPICS

Riemann Zeta Function zeta(2) (4)

Download WolframNotebook

The value for

Riemann Zeta Function zeta(2) (7)

(1)

can be found using a number of different techniques (Apostol 1983, Choe 1987, Giesy 1972, Holme 1970, Kimble 1987, Knopp and Schur 1918, Kortram 1996, Matsuoka 1961, Papadimitriou 1973, Simmons 1992, Stark 1969, 1970, Yaglom and Yaglom 1987).

Riemann Zeta Function zeta(2) (8) is therefore the definite sum version of the indefinite sum

Riemann Zeta Function zeta(2) (9)Riemann Zeta Function zeta(2) (10)Riemann Zeta Function zeta(2) (11)

(2)

Riemann Zeta Function zeta(2) (12)Riemann Zeta Function zeta(2) (13)Riemann Zeta Function zeta(2) (14)

(3)

where Riemann Zeta Function zeta(2) (15) is a generalized harmonic number (whose numerator is known as a Wolstenholme number) and Riemann Zeta Function zeta(2) (16) is a polygamma function.

The problem of finding this value analytically is sometimes known as the Basel problem (Derbyshire 2004, pp.63 and 370) or Basler problem (Castellanos 1988). It was first proposed by Pietro Mengoli in 1644 (Derbyshire 2004, p.370). The solution

Riemann Zeta Function zeta(2) (17)

(4)

was first found by Euler in 1735 (Derbyshire 2004, p.64) or 1736 (Srivastava 2000).

Yaglom and Yaglom (1987), Holme (1970), and Papadimitriou (1973) all derive the result, Riemann Zeta Function zeta(2) (18) from de Moivre's identity or related identities.

Riemann Zeta Function zeta(2) (19) is given by the series

Riemann Zeta Function zeta(2) (20)

(5)

(Knopp 1990, pp.266-267), probably known to Euler and rediscovered by Apéry.

Bailey (2000) and Borwein and Bailey (2003, pp.128-129) give a collection of BBP-type formulas that include a number for Riemann Zeta Function zeta(2) (21),

Riemann Zeta Function zeta(2) (22)Riemann Zeta Function zeta(2) (23)Riemann Zeta Function zeta(2) (24)

(6)

Riemann Zeta Function zeta(2) (25)Riemann Zeta Function zeta(2) (26)Riemann Zeta Function zeta(2) (27)

(7)

Riemann Zeta Function zeta(2) (28) is given by the double series

Riemann Zeta Function zeta(2) (29)

(8)

(B.Cloitre, pers. comm., Dec.9, 2004).

One derivation for Riemann Zeta Function zeta(2) (30) considers the Fourier series of Riemann Zeta Function zeta(2) (31)

Riemann Zeta Function zeta(2) (32)

(9)

which has coefficients given by

Riemann Zeta Function zeta(2) (33)Riemann Zeta Function zeta(2) (34)Riemann Zeta Function zeta(2) (35)

(10)

Riemann Zeta Function zeta(2) (36)Riemann Zeta Function zeta(2) (37)Riemann Zeta Function zeta(2) (38)

(11)

Riemann Zeta Function zeta(2) (39)Riemann Zeta Function zeta(2) (40)Riemann Zeta Function zeta(2) (41)

(12)

where Riemann Zeta Function zeta(2) (42) is a generalized hypergeometric function and (12) is true since the integrand is odd. Therefore, the Fourier series is given explicitly by

Riemann Zeta Function zeta(2) (43)

(13)

If Riemann Zeta Function zeta(2) (44), then

Riemann Zeta Function zeta(2) (45)

(14)

so the Fourier series is

Riemann Zeta Function zeta(2) (46)

(15)

Letting Riemann Zeta Function zeta(2) (47) gives Riemann Zeta Function zeta(2) (48), so

Riemann Zeta Function zeta(2) (49)

(16)

and we have

Riemann Zeta Function zeta(2) (50)

(17)

Higher values of Riemann Zeta Function zeta(2) (51) can be obtained by finding Riemann Zeta Function zeta(2) (52) and proceeding as above.

The value Riemann Zeta Function zeta(2) (53) can also be found simply using the root linear coefficient theorem. Consider the equation Riemann Zeta Function zeta(2) (54) and expand sin in a Maclaurin series

Riemann Zeta Function zeta(2) (55)

(18)

Riemann Zeta Function zeta(2) (56)Riemann Zeta Function zeta(2) (57)Riemann Zeta Function zeta(2) (58)

(19)

Riemann Zeta Function zeta(2) (59)Riemann Zeta Function zeta(2) (60)Riemann Zeta Function zeta(2) (61)

(20)

where Riemann Zeta Function zeta(2) (62). But the zeros of Riemann Zeta Function zeta(2) (63) occur at Riemann Zeta Function zeta(2) (64), Riemann Zeta Function zeta(2) (65), Riemann Zeta Function zeta(2) (66), ..., or Riemann Zeta Function zeta(2) (67), Riemann Zeta Function zeta(2) (68), .... Therefore, the sum of the roots equals the coefficient of the leading term

Riemann Zeta Function zeta(2) (69)

(21)

which can be rearranged to yield

Riemann Zeta Function zeta(2) (70)

(22)

Yet another derivation (Simmons 1992) evaluates Riemann Zeta Function zeta(2) (71) using Beukers's (1979) integral

Riemann Zeta Function zeta(2) (72)Riemann Zeta Function zeta(2) (73)Riemann Zeta Function zeta(2) (74)

(23)

Riemann Zeta Function zeta(2) (75)Riemann Zeta Function zeta(2) (76)Riemann Zeta Function zeta(2) (77)

(24)

Riemann Zeta Function zeta(2) (78)Riemann Zeta Function zeta(2) (79)Riemann Zeta Function zeta(2) (80)

(25)

Riemann Zeta Function zeta(2) (81)Riemann Zeta Function zeta(2) (82)Riemann Zeta Function zeta(2) (83)

(26)

Riemann Zeta Function zeta(2) (84)Riemann Zeta Function zeta(2) (85)Riemann Zeta Function zeta(2) (86)

(27)

Riemann Zeta Function zeta(2) (87)Riemann Zeta Function zeta(2) (88)Riemann Zeta Function zeta(2) (89)

(28)

Riemann Zeta Function zeta(2) (90)Riemann Zeta Function zeta(2) (91)Riemann Zeta Function zeta(2) (92)

(29)

To evaluate the integral, rotate the coordinate system by Riemann Zeta Function zeta(2) (93) so

Riemann Zeta Function zeta(2) (94)Riemann Zeta Function zeta(2) (95)Riemann Zeta Function zeta(2) (96)

(30)

Riemann Zeta Function zeta(2) (97)Riemann Zeta Function zeta(2) (98)Riemann Zeta Function zeta(2) (99)

(31)

and

Riemann Zeta Function zeta(2) (100)Riemann Zeta Function zeta(2) (101)Riemann Zeta Function zeta(2) (102)

(32)

Riemann Zeta Function zeta(2) (103)Riemann Zeta Function zeta(2) (104)Riemann Zeta Function zeta(2) (105)

(33)

Then

Riemann Zeta Function zeta(2) (106)Riemann Zeta Function zeta(2) (107)Riemann Zeta Function zeta(2) (108)

(34)

Riemann Zeta Function zeta(2) (109)Riemann Zeta Function zeta(2) (110)Riemann Zeta Function zeta(2) (111)

(35)

Now compute the integrals Riemann Zeta Function zeta(2) (112) and Riemann Zeta Function zeta(2) (113).

Riemann Zeta Function zeta(2) (114)Riemann Zeta Function zeta(2) (115)Riemann Zeta Function zeta(2) (116)

(36)

Riemann Zeta Function zeta(2) (117)Riemann Zeta Function zeta(2) (118)Riemann Zeta Function zeta(2) (119)

(37)

Riemann Zeta Function zeta(2) (120)Riemann Zeta Function zeta(2) (121)Riemann Zeta Function zeta(2) (122)

(38)

Make the substitution

Riemann Zeta Function zeta(2) (123)Riemann Zeta Function zeta(2) (124)Riemann Zeta Function zeta(2) (125)

(39)

Riemann Zeta Function zeta(2) (126)Riemann Zeta Function zeta(2) (127)Riemann Zeta Function zeta(2) (128)

(40)

Riemann Zeta Function zeta(2) (129)Riemann Zeta Function zeta(2) (130)Riemann Zeta Function zeta(2) (131)

(41)

so

Riemann Zeta Function zeta(2) (132)

(42)

and

Riemann Zeta Function zeta(2) (133)

(43)

Riemann Zeta Function zeta(2) (134) can also be computed analytically,

Riemann Zeta Function zeta(2) (135)Riemann Zeta Function zeta(2) (136)Riemann Zeta Function zeta(2) (137)

(44)

Riemann Zeta Function zeta(2) (138)Riemann Zeta Function zeta(2) (139)Riemann Zeta Function zeta(2) (140)

(45)

Riemann Zeta Function zeta(2) (141)Riemann Zeta Function zeta(2) (142)Riemann Zeta Function zeta(2) (143)

(46)

But

Riemann Zeta Function zeta(2) (144)Riemann Zeta Function zeta(2) (145)Riemann Zeta Function zeta(2) (146)

(47)

Riemann Zeta Function zeta(2) (147)Riemann Zeta Function zeta(2) (148)Riemann Zeta Function zeta(2) (149)

(48)

Riemann Zeta Function zeta(2) (150)Riemann Zeta Function zeta(2) (151)Riemann Zeta Function zeta(2) (152)

(49)

Riemann Zeta Function zeta(2) (153)Riemann Zeta Function zeta(2) (154)Riemann Zeta Function zeta(2) (155)

(50)

Riemann Zeta Function zeta(2) (156)Riemann Zeta Function zeta(2) (157)Riemann Zeta Function zeta(2) (158)

(51)

so

Riemann Zeta Function zeta(2) (159)Riemann Zeta Function zeta(2) (160)Riemann Zeta Function zeta(2) (161)

(52)

Riemann Zeta Function zeta(2) (162)Riemann Zeta Function zeta(2) (163)Riemann Zeta Function zeta(2) (164)

(53)

Riemann Zeta Function zeta(2) (165)Riemann Zeta Function zeta(2) (166)Riemann Zeta Function zeta(2) (167)

(54)

Combining Riemann Zeta Function zeta(2) (168) and Riemann Zeta Function zeta(2) (169) gives

Riemann Zeta Function zeta(2) (170)

(55)

See also

Apéry's Constant, Hadjicostas'sFormula, Riemann Zeta Function

Explore with Wolfram|Alpha

References

Apostol, T.M. "A Proof That Euler Missed: Evaluating Riemann Zeta Function zeta(2) (172) the Easy Way." Math. Intel. 5, 59-60, 1983.Bailey, D.H. "A Compendium of BBP-Type Formulas for Mathematical Constants." 28 Nov 2000. http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf.Beukers, F. "A Note on the Irrationality of Riemann Zeta Function zeta(2) (173) and Riemann Zeta Function zeta(2) (174)." Bull. London Math. Soc. 11, 268-272, 1979.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp.89-90, 2003.Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.Choe, B.R. "An Elementary Proof of Riemann Zeta Function zeta(2) (175)." Amer. Math. Monthly 94, 662-663, 1987.Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.Giesy, D.P. "Still Another Proof That Riemann Zeta Function zeta(2) (176)." Math. Mag. 45, 148-149, 1972.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp.37-40, 2003.Holme, F. "Ein enkel beregning av Riemann Zeta Function zeta(2) (177)." Nordisk Mat. Tidskr. 18, 91-92 and 120, 1970.Kimble, G. "Euler's Other Proof." Math. Mag. 60, 282, 1987.Knopp, K. Theory and Application of Infinite Series. New York: Dover, 1990.Knopp, K. and Schur, I. "Über die Herleitug der Gleichung Riemann Zeta Function zeta(2) (178)." Archiv der Mathematik u. Physik 27, 174-176, 1918.Kortram, R.A. "Simple Proofs for Riemann Zeta Function zeta(2) (179) and Riemann Zeta Function zeta(2) (180)." Math. Mag. 69, 122-125, 1996.Matsuoka, Y. "An Elementary Proof of the Formula Riemann Zeta Function zeta(2) (181)." Amer. Math. Monthly 68, 486-487, 1961.Papadimitriou, I. "A Simple Proof of the Formula Riemann Zeta Function zeta(2) (182)." Amer. Math. Monthly 80, 424-425, 1973.Simmons, G.F. "Euler's Formula Riemann Zeta Function zeta(2) (183) by Double Integration." Ch.B. 24 in Calculus Gems: Brief Lives and Memorable Mathematics. New York: McGraw-Hill, 1992.Spiess, O. "Die Summe der reziproken Quadratzahlen." In Festschrift zum 60 Geburtstag von Dr.Andreas Speiser (Ed. L.V.Ahlfors et al. ). Zürich: Füssli, pp.66-86, 1945.Srivastava, H.M. "Some Simple Algorithms for the Evaluations and Representations of the Riemann Zeta Function at Positive Integer Arguments." J. Math. Anal. Appl. 246, 331-351, 2000.Stark, E.L. "Another Proof of the Formula Riemann Zeta Function zeta(2) (184)." Amer. Math. Monthly 76, 552-553, 1969.Stark, E.L. "Riemann Zeta Function zeta(2) (185)." Praxis Math. 12, 1-3, 1970.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p.40, 1986.Yaglom, A.M. and Yaglom, I.M. Problem 145 in Challenging Mathematical Problems with Elementary Solutions, Vol.2. New York: Dover, 1987.

Referenced on Wolfram|Alpha

Riemann Zeta Function zeta(2)

Cite this as:

Weisstein, Eric W. "Riemann Zeta Function zeta(2)."From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RiemannZetaFunctionZeta2.html

Subject classifications

Riemann Zeta Function zeta(2) (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Arline Emard IV

Last Updated:

Views: 6375

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Arline Emard IV

Birthday: 1996-07-10

Address: 8912 Hintz Shore, West Louie, AZ 69363-0747

Phone: +13454700762376

Job: Administration Technician

Hobby: Paintball, Horseback riding, Cycling, Running, Macrame, Playing musical instruments, Soapmaking

Introduction: My name is Arline Emard IV, I am a cheerful, gorgeous, colorful, joyous, excited, super, inquisitive person who loves writing and wants to share my knowledge and understanding with you.